Subcubic Edge-Chromatic Critical Graphs Have Many Edges
نویسندگان
چکیده
We consider graphs G with ∆ = 3 such that χ′(G) = 4 and χ′(G− e) = 3 for every edge e, so-called critical graphs. Jakobsen noted that the Petersen graph with a vertex deleted, P ∗, is such a graph and has average degree only 2 + 2 3 . He showed that every critical graph has average degree at least 2+ 23 , and asked if P ∗ is the only graph where equality holds. We answer his question affirmatively. Our main result is that every subcubic critical graph, other than P ∗, has average degree at least 2 + 26 37 = 2.702.
منابع مشابه
On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملIndependent sets and 2-factors in edge-chromatic-critical graphs
In 1968, Vizing made the following two conjectures for graphs which are critical with respect to the chromatic index: (1) every critical graph has a 2-factor, and (2) every independent vertex set in a critical graph contains at most half of the vertices. We prove both conjectures for critical graphs with many edges, and determine upper bounds for the size of independent vertex sets in those gra...
متن کاملColor-Critical Graphs and Hypergraphs with Few Edges: A Survey
A hypergraph is color-critical if deleting any edge or vertex reduces the chromatic number; a color-critical hypergraph with chromatic number k is k-critical. Every k-chromatic hypergraph contains a k-critical hypergraph, so one can study chromatic number by studying the structure of k-critical (hyper)graphs. There is vast literature on k-critical graphs and hypergraphs. Many references can be ...
متن کاملOn packing chromatic number of subcubic outerplanar graphs
The question of whether subcubic graphs have finite packing chromatic number or not is still open although positive responses are known for some subclasses, including subcubic trees, base-3 Sierpiski graphs and hexagonal lattices. In this paper, we answer positively to the question for some subcubic outerplanar graphs. We provide asymptotic bounds depending on structural properties of the weak ...
متن کاملAcyclic edge coloring of subcubic graphs
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using 5 colors. This result is tight since there are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 86 شماره
صفحات -
تاریخ انتشار 2017